BLUEPRINT FOR EFFICIENCY

POLICY | INVESTMENT | COMMUNITY | TECHNOLOGY

Yale Center for Business and the Environment

A Day in the Life of a Smart Building

Clay Nesler Vice President, Global Energy and Sustainability Johnson Controls

(clay.g.nesler@jci.com)

8:00 pm Smart planning for tomorrow

- System accesses tomorrow's weather forecast
- Real time price forecasts are received from the electric utility
- System schedules night time ice storage generation

4:00 am Chiller fault detected

- On-board diagnostics determines a chiller valve has failed
- System calculates costs associated with this fault based on real time price forecasts
- System auto-generates a work order and notifies facility manager by smart phone

7:00 am Chiller repaired

- Service technician arrives after being dispatched automatically
- Technician quickly fixes problem knowing the source and the new parts required
- Repair allows system to generate enough ice prior to spike in prices anticipated later in the afternoon

8:00 am

Employee plugs in vehicle at work

- Electric or plug-in hybrid vehicles recharge when real time price of electricity is low
- Smart charging supports voltage regulation for the local utility
- Purchase or sale of power to building is automatically factored into payroll system

9:00 am Meeting space is ready to go

- The building management system prepares the conference room for a meeting with 15 people
- Occupancy and CO₂ sensors provide an override in the case less or more people attend the meeting

10:00 am CFO calls for carbon reporting data

- A market analyst asks the CFO about the business' carbon management strategies
- Enterprise dashboard provides access to carbon emissions data for the most recent quarter and annual carbon reductions

11:00 am

Utility power price triggers automatic demand reduction for tenant

- The price for electricity from 12pm-2pm exceeds the threshold pre-defined by the tenant
- The following actions to reduce power demand are taken:
 - reset space temps by 2°F
 - slowly dim lighting 20% in occupant spaces
- Actions and impact reported back to utility

12:00 pm

Power price triggers automated demand reduction for building owner

- The building management system also takes action in common areas:
 - dispatch ice storage cooling
 - increase chilled water set point
 - dim lighting in common areas by 20%
- Actions and impact are reported back to utility

2:00 pm

Automated demand reductions leverage IT system integration

- System alerts employees via email or text message to unplug their laptops and run on battery power from 2-4pm
- PC power management software agent automatically reduces desktop power consumption
- Computing load is reduced for non-production servers and non-critical tasks are deferred

3:00 pm

Cloud cover causes solar photovoltaic generation to drop

- Building receives a demand limiting signal from utility during the 2pm -5pm period.
- When cloud cover causes solar production to drop, system uses on-site electric storage to meet demand reduction goal
- Combination of distributed generation, electric and thermal storage and vehicle charging is used to control the load profile

5:30 pm Leaving the office

- As employee badges out, the system automatically turns off the lights and puts the computer into stand-by
- When he arrives to parking deck, his plug-in electric vehicle has been charged just enough for him to get home

6:30 pm End of the workday

- System controls lighting and HVAC to follow the janitorial staff throughout the building
- Video surveillance system counts occupants remaining after hours and adjusts temperature setpoints and lighting

Case Study: Ave Maria University

- Opened to students and faculty in 2007
- Convergence of 23 technology systems on one IP backbone
 - Building management
 - Security management
 - IT Systems
 - Fire/life safety
 - HVAC Equipment
 - Audio/visual Systems
- CMMS integration with BMS for automated work order generation and management

Saved \$1.5M in infrastructure costs Saved \$600K/year in energy costs Saved \$350K/year in staffing costs

Case Study: Georgia Institute of Technology

- Georgia Tech buys electricity on dynamic hourly price from Georgia Power
- Each hour, building management system reads prices for for next 48 hours from utility's web service feed
- Facilities director sets price threshold for automated load shedding mode

Savings during initial summer 2006 single building pilot

Week	Number of RTP Events	Amp-Hours Saved	Energy Saved (kWh)	Cost Savings (\$)
July 16-21*	5	524	3772	438
Aug. 8–12	4	185	1335	155
Aug. 13–19	2	27	195	22
Aug. 20–26	1	60	431	50
Aug. 27-Sep. 2	3	150	1080	126
Total	15	946	6813	790

Observing a ~1MW peak load reduction, 7% of demand for participating buildings

Case Study: State of Missouri

Case Study: IDeAS Net Zero Energy Building

- Integrated Design Associates - San Jose, CA
- Commercial Office Building Retrofit Project
- Geothermal heat pump with floor-based radiant heating and cooling and dedicated high efficiency outdoor air ventilation unit
- PV-integrated membrane roofing
- High efficiency windows and day lighting controls
- 40% better than 2005 California Title 24 energy requirements

Case Study: Johnson Controls Corporate Headquarters

- Personal Environmental Modules provide individualized controls as well as integration with the Building Management System to optimize comfort, indoor environmental quality and energy efficiency.
- Real-time monitoring of building occupancy provides additional energy efficiency opportunities across the corporate campus.

Case Study: Empire State Building

For more information about smart buildings and smart grid integration is available at:

www.InstituteBE.com

institute for **building efficiency** an initiative of Johnson Controls

